My Unified Field Theory Predicting the Beryllium 9 Isotope

In my field theory, Protons mostly repel each other, and mostly bond only with neutrons.  Electrons form ring orbitals at right angles to the axis of protons that they are linked with.  Thus, we have limitations on how easy it is for protons and neutrons to form.

The first atom is of course hydrogen.  It commonly has no neutron, and the electron orbits the hydrogen yet does not fall inwards toward it.  This is explained by the quanta fields surrounding the proton, where inside, we have a doughnut ring with another particle that greatly attracts the electron, thus the proton field pushes against the electron field, but each has a particle that pulls them together.

The next atom is Helium, whose first stable isotope is Helium 3, which is composed of a proton-neutron-proton chain, it is not very abundant. But it is interesting..

Helium3a

The most abundant isotope is Helium 4, which has two protons and two neutrons, and it would look like this:

beryl1a

The next atom is Lithium, which is discussed in the previous post, My Unified Field Theory.  To recap, the most stable configuration of Lithium were two isotopes in ring form.  Lithium 1-5 always have protons touching, very closely, thus none of those were able to form lasting isotopes.  Lithium 6, as helium plus the proton and neutron as a tangent to the helium ring would not work because the bonds are so close together the whole magnetic system forms a ring, it almost imposes a ring formation upon itself.  Lithium 6 as a ring does work.  And Lithium 7, the more abundant lithium isotope is even more stable because the bonds are under less stress at the angles they connect to. No other Lithium isotopes are found to be stable.  This may or may not have to do with the angles in which electron orbital rings cross each other.  If that matters, that would be the final key to understanding Isotope production in the Periodic Table.

Finally we have Beryllium.

We have 3 ways in which to form the most stable isotope, which is Beryllium 9, it has four protons and five neutrons.

Let us first examine the reasons Beryllium 8 decays so quickly.

Beryllium 8 is basically two Helium atoms being pressed together through fusion in stars.

beryl2a

The first combination is one in which no proton is touching as the two come together on their sides, …

beryl3a

As we can see here, one neutron has to be shared by a neutron and a proton, and this is a very weak bond, even among these magnets, this bond is easily broken, more so in the atom where protons actually repel each other.  It is possible the electron rings cross at such an angle that they also create great instability for the atom.  Beryllium 8’s decay particle is actually helium itself, which is an alpha particle.  So it is clear that it is easy to see that if this bond breaks, one of them will definitely be a helium atom, or two protons and two neutrons.

The next configuration is two helium atoms put together in a layer…

beryl4a

Oddly, these neodymium magnets did not hold together very well in this configuration.  All the bonds were weak because they had to bond horizontally instead of from pole to pole.  This layered system fell apart easily, and made a helium atom in the process, just like we see with real world results in alpha decay in Beryllium 8.

The next bonding set up for Beryllium 8 was a ring system….

beryl5a

It is unknown to me why this configuration is unstable.  It is possible that protons are more disk shaped than spherical, just a bit, and my theory proposes just such a situation.  We have here, neutrons between each proton, so none are touching, and the electron orbital rings are at 90 degrees to each other.  If the protons are more doughnut shaped, then perhaps their angles are more limited than we have allowed for them.

The stable Beryllium Isotope is Beryllium 9.  It too is only stable in a ring format.

Beryl6b

Here the proton-neutron bonds are in less stressful bonding angles, and the electron orbital rings are still nearly 90 degrees to each other.  It is interesting to note, that Beryllium 10 has a half life of 1.6 million years, which isn’t too short of a life.  It is possible that the extra neutron is found between the other two neutrons, which would explain why when it decays it throws off a beta particle, which is an electron or anti-electron.  This could indicate that neutrons in a neutron-neutron-neutron bond cause the center neutron to become unstable enough to lose its captured electron, which turns it back into a proton.  This would explain its decay products which are an electron, (or positron, which is just an electron spinning backwards) and boron 10.  Which is composed of 5 protons and 5 neutrons, exactly what would happen if a neutron self destructed in a Beryllium 10 ring.

My proposal is that electron orbitals put great stress on the inner structure of the atomic nucleus.  This limits the angles in which stable pole to pole connections can be formed.  Neutron to neutron binding may cause beta decay.  And proton-proton bonding is very limited, if it even occurs at all, which also goes to limit the angles that these sub atomic particles can bond at.  My theory, so far, helps to predict isotopes in the elements from Hydrogen to Beryllium, and possibly Boron.

I hope you enjoyed this theorizing as much as I did.  Have a great day.  And enjoy your weekend. 🙂

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s